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ABSTRACT

Tumor detection in CT liver images is a challenging task. The

nature of tumor has a direct effect on the number of voxels

being contaminated, as well as on the changes in the observed

CT scan. In order to deal with this challenge, in this paper

we propose the use of advanced non-linear machine learning

techniques to determine the optimal features, as well as the

hyperplane that use these features to separate tumoral voxels

from voxels corresponding to healthy tissues. Very promising

classification results using an important volume of clinically

annotated data (86% sensitivity, 82% specificity) demonstrate

the potentials of our approach.

Index Terms— Image segmentation, Liver tumors, Ma-

chine Learning, Texture, AdaBoost

1. INTRODUCTION

Liver cancer is a deadly disease with an important frequency

on the world. Surgical resection is the best treatment avail-

able, but may apply only when some conditions on tumor

sizes are met. Therefore early diagnosis and accurate ap-

praisal of tumors are critical. The exceptional resolution of

CT images allows good detection rates for most tumor types.

However, the detection of liver tumors is challenging due to

the small observable changes between healthy tissues and

tumoral ones. Such a task is even challenging for clinical

experts, where one can refer to an important volume varia-

tion (15-25%) between experts. Thus a good and repeatable

method to detect the tumors would be an advantage. Being

clinically motivated, such an approach should work for di-

verse tumor types at same time, in order to avoid multiple and

successive segmentations.

Such a task is quite difficult. First, various tumors have

to be segmented, with miscellaneous appearances. Then, of-

ten a striking resemblance exists between tumoral and healthy

tissues. Moreover, some tumors are only visible, or more dis-

tinguishable, when an appropriate phase has been considered.

In general, these phases are roughly four, which correspond

to diverse delays between the injection of a contrast prod-
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uct and the image acquisition. At the image level, the out-

comes are diverse appearances and intensities ranges, both

for the healthy tissues and the tumoral ones, along with shift-

ing appearances for a same tumor from one phase to another.

Another challenging problem is due to the liver itself. Be-

ing an organ with a high level of vascularization, the images

obtained are really noisy, a property that is amplified due to

the enhancements. Finally, because of the focus on clinical

use, the method should work for real images, meaning images

from diverse CT machines, with various levels of resolution

and for both connected as well as disconnected slices.

In this paper, we would like to address the problem of

classification of diverse tumor types versus the healthy tis-

sues in the liver. This detection has to be done towards sat-

isfying a number of constraints, like different resolution lev-

els, various enhancement phases and protocols, and in noisy

anisotropic CT images. We propose a learning based ap-

proach to address the task, which address both feature se-

lection and tumor classification. We assume that image in-

tensities are normalized, and from a predefined set of filters

we select the ones for which an optimal classifier exists, to

separate healthy versus non-healthy tissues. This classifier is

based on the AdaBoost method [1], that decomposes the pro-

cess into a number of weak classification tests. Once such a

multi-level, multi-feature classifier has been determined, the

task of detection consists of determining the distance between

the classifier and the observations in a new volume.

The remainder of the paper is organized as follows: in

section 2 we briefly present the feature bank and the classifier

while the task of detection is part of section 3. Experimental

results and conclusions are part of section 4.

2. BACKGROUND

Machine learning aims to determine a process that separates

a set of observations. In our case, observations consist of in-

tensities and classes correspond to tumor versus non-infected

tissue. Despite the resolution of CT images, one can imagine

that the separation of healthy versus non-healthy samples in

this space is almost impossible. The use of filters and their

responses, is a convenient way to take into account the rela-

tive context, and consider features with better discrimination
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power. One can consider either the responses themselves or

seek for a separation on a subspace that encodes the depen-

dencies at the local scale of these responses.

First, let us consider without loss of generality a bank of

texture descriptors. Then, let us use the AdaBoost method to

learn a separation in the feature space.

2.1. Texture descriptors

One can seek for a feature space that measures the statisti-

cal properties of this space. We have considered two differ-

ent texture descriptors. First, statistical metrics on the texture

histogram were chosen (standard deviation, skewness, etc).

Then, some second order descriptors were retained, namely

Haralick’s descriptors [2], because they have been shown to

be the most informative ones in a similar context [3].

These Haralick’s descriptors are metrics upon pairs of

pixels. They are computed using co-occurrence matrices

P (d, θ), which are distribution of probabilities, that keep

track of pixels pairs for given direction θ and distance d.

Pi,j(d, θ) gives the probability to get a pair of pixels with

intensities of i and j, at distance d and in direction θ. Be-

cause of the wide range of intensities, these matrices may

have a high size, without information gain, thus intensities

are linearly normalized on each texture. It allows to narrow

the dimension of the co-occurrence matrices to an admitted

number of gray levels, and with a substantive information

gain.

Once the feature space has been determined, a classifier is

to be introduced towards separating the features.

2.2. AdaBoost

AdaBoost is a supervised learning method, introduced by Fre-

und and Schapire[1], based on the use of weak learners to con-

struct a strong classifier. This method has been widely used,

because it runs fast (when the weak learners are fast) and may

be applied in many cases. However, the quality of the results

is dependent of the choice of adapted weak learners. This

method applies well to our problem, because it allows to ac-

count for classes that may be divided into clusters.

AdaBoost uses a training set (1), and a set of weak learn-

ers to learn a strong classifier (2). The training set is made

up of pairs of object or features representing the object, noted

xi, and related class, noted yi. A strong classifier is created

by an an iterative process, as a linear sum of weak learners.

This gives a classification function for the training set, thus,

this last should be a good sample of the general case, in order

to achieve a good generalization error.

{(x1, y1) , . . . (xm, ym)} (1)

H (x) = sign

(
T∑

t=1

αtht(x)

)
(2)

3. METHOD

3.1. Normalization

The diversity of the exams used prevents direct comparison

of the images. Thus, images are normalized by equalizing the

histograms in the liver envelope.

3.2. Texture features

Instead of working on texture patches, the classification is

done on the texture features of each patch. These features are

obtained by cross-product between a set of filters and a set

of texture descriptors. It means that each feature is a texture

descriptor applied to a texture patch from a filtered image.

The use of filters is consistent with the framework. First,

we work on noisy images, thus filtering is required. Then,

3D filters may have a normalization effect between the var-

ious sizes of slice. Finally, filters may be used to enhance

some features. The usual filters (Gaussian, Mean, etc) are

used, with diverse radius. In addition, 3D Gabor’s filters were

chosen to consider the texture information. Gabor’s filters are

strongly related with the human visual system, and are of-

ten linked with texture constraints. Finally, useful filters in

the liver case were retained, namely median and Nagao’s fil-

ters [4]. In the following parts, filters will be noted fm,Θ, with

m defining the type of the filter, and Θ its parameters.

Statistical and Haralick’s descriptors are used as texture

descriptors, but with some refinements. The idea is to intro-

duce some kind of multi scale approach at the texture level,

meaning to use diverse sizes of texture at same time. Instead

of manipulating a set of texture with diverse size, the texture

descriptors were modified to account for diverse sizes.

In terms of statistical descriptors, one can account for the

above modification through a histogram computation within a

radius from the center. For Haralick’s descriptors the change

is made in the co-occurrence matrices by adding a radius r
to their definition, that becomes P (d, θ, r). This new matrix

gives the probability of pixels pairs at distance d, for direction

θ and within a distance r from the texture center. This radius

r may take any value between 1 and the texture radius. A

radius of 0 make no sense, because pixels pairs are needed,

and we should remain within the texture patch. The other

parameters, d and θ, keep usual values, namely d = 1 and θ =
{0, 45, 90, 135}. It should be noted that the computation of a

co-occurrence matrix P (d, θ, r + 1) is eased when P (d, θ, r)
is known. One only has to add pairs on the edges.

3.3. Learning Step

First, weak learners are defined. In our case, texture features

contain the information, thus the weak learners will be ele-

mentary. They are defined as the comparison of one texture

feature to a reference value. For the jth feature of the object
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Fig. 1. Quality of segmentation in function of the texture size.

An optimal size of texture of 13 is easily seen.

x a weak learner is defined as following:

hl(xj) =

{
1 if δ · xj ≤ δ · γj,l

−1 otherwise
(3)

where δ ∈ {−1; 1} gives the sign for the comparison, and γj,l

is one of the admitted value for the jth texture feature.

Then, a learning set is created. This step is truly cru-

cial. In order to achieve good generalization error, tumoral

and healthy textures should be correctly sampled, while stick-

ing close to the real distribution of the tumor types. First, a

set of exams was selected, with diverse sizes of slice and tu-

mor types, in an attempt to sample the real distribution of the

tumoral types. Then, texture patches were taken under some

constraints. An equal number of tumoral and healthy patches

are sampled. Theses patches are chosen with a regular dis-

tribution, in order to have a good sampling of the possible

appearances. It should be noted that no texture patches were

taken in the tumor edges, because the appearance here is too

random and may be source of errors.

3.4. Learning Database

We have used 15 manually annotated volumes to train our

classifier. These volumes include 3 types of tumors. We have

also considered filters of different scales and we did compare

the performance towards determining the optimal bandwidth.

4. RESULTS

Let us now consider a new volume, where one has to deter-

mine or not the presence of tumors. In order to quantify the

performance of our method, one has first to define a metric

with respect to the ground truth.

4.1. Comparison metric

Usually two metrics are used to quantify the quality of a seg-

mentation, the sensitivity (4), that gives the percentage of tu-

mor that is correctly classified, and the specificity (5), that

quantifies the quality of the segmentation for healthy tissues.

Whole Set HCC Metastases Other

Sensitivity 86% 84% 87% 93%

Specificity 80% 79% 81% 84%

Specificity

(vessels 82% 80% 84% 84%

segmented)

Fig. 2. Segmentation results obtained with the same strong

classifier for diverse tumors. Segmentation of vessel networks

as a first step does not modify the sensitivity, whereas speci-

ficity improves.

sensitivity =
TP

TP + FN
(4)

specificity =
TN

TN + FP
(5)

where TP is the number of true positives, FN is the num-

ber of false negatives, TN is the number of true negatives and

FP the number of false positives.

The goal is to insure a good sensitivity without loss in

term of specificity. Thus a comparison metric (6) is defined

as a weighted sum of these square two terms, allowing to in-

crease the penalty for small values. These two terms are bal-

anced in order to emphasize the relative weight of each term.

In a clinical context sensitivity matters more, thus the weights

will be set to λ = 2
3 and β = 1

3 in the following parts.

λ · [sensitivity]2 + β · [specificity]2 (6)

4.2. Impact of texture size

The choice of a size of texture is important. One has to find a

balance between the computation time, that is lower for small

textures, and the quality of segmentation, that should increase

with texture size. The best results were obtained for a size of

13 pixels (see Fig.1). This choice is consistent with texture

sizes chosen in similar problems, 9 × 9 windows in [3], and

windows from 9 × 9 to 13 × 13 pixels in [5].

4.3. Results on diverse tumor types

Classification has been applied to a set of 798 slices, contain-

ing metastases from diverse primary sites, HCC, Adenoma

and Cholangiocarcinomas. Diagnoses were confirmed by

anatomical pathology. The results are quite good, with slight

differences between the tumor types (see Fig.2). The high

results for the less common tumor types may not be really

significant, because few slices of these types were used.

The volume of the tumor impacts the quality of the seg-

mentation, but two interesting facts should be noted. First,

when tumors are bigger than the size of the texture, the detec-

tion rate is quickly optimal. Then, even tumors smaller than
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(a) (b) (c)

Fig. 4. Segmentation results for some tumors with a texture size of 13, without removing vessels. The ground truth is in white,

the result of the segmentation is in black. From the left to the right: (a) Segmentation for metastases, portal phase, slice size

1.3mm. (b) Segmentation for a HCC, arterial phase, slice size 1.3mm. (c) Segmentation for an Adenoma, arterial phase, slice

size 2mm. CT images are courtesy from V. Vilgrain’s Department (Beaujon, Paris)

Fig. 3. Percentage, in volume, of tumors accurately seg-

mented, in function of the volume of the tumor. The volume

of the texture patches used, spans between 0.61 and 3.05 cm3,

with an average volume of 1.54 cm3.

the patches are partially segmented, but the accuracy of the

segmentation is lower and more random (see Fig.3).

There are two common cases of false positive, namely re-

gions close to enhanced vessels, or on the sides of the liver.

The first problem may be partially addressed by doing a seg-

mentation of the liver vessels as a first step, which will help

to avoid classifying vessels as tumors. This improves slightly

the specificity of the classification, as may be seen in (Fig.2).

The improvement remains small. Indeed this step cannot help

the classification of the neighborhood of vessels, because tu-

mors are often close to vessels and even growing new vessels.

5. CONCLUSION

We have presented a method of detection for the liver tu-

mors. This segmentation is done by classifying pixels as their

surrounding texture, with the help of an AdaBoost classifier.

The results of segmentation were 86% of sensitivity and 80%

of specificity. As improvement, liver vessels were removed,

which turns into an increase of the specificity to 82%. It re-

mains to be seen if this improvement is worth the time needed

for vessel segmentation. In the future the classification may

be improved by treating differently regions close to vessels

and the boundaries of the liver. Furthermore, the use of tech-

niques that aim to impose global consistency on the classi-

fication, using for examples MRFs or mean-shift could be a

quite promising direction. Because this approach is generic

enough, it may apply on other segmentation problems, where

texture information is important.
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